Efficient time stepping for the multiplicative Maxwell fluid including the Mooney-Rivlin hyperelasticity
نویسنده
چکیده
A popular version of the finite strain Maxwell fluid is considered, which is based on the multiplicative decomposition of the deformation gradient tensor. The model combines Newtonian viscosity with hyperelasticity of Mooney-Rivlin type; it is a special case of the viscoplasticty model proposed by Simo and Miehe (1992). A simple, efficient and robust implicit time stepping procedure is suggested. Lagrangian and Eulerian versions of the algorithm are available, with equivalent properties. The numerical scheme is iteration free, unconditionally stable and first order accurate. It exactly preserves the inelastic incompressibility, symmetry, positive definiteness of the internal variables, and w-invariance. The accuracy of the stress computations is tested using a series of numerical simulations involving a non-proportional loading and large strain increments. In terms of accuracy, the proposed algorithm is equivalent to the modified Euler backward method with exact inelastic incompressibility; the proposed method is also equivalent to the classical integration method based on exponential mapping. Since the new method is iteration free, it is more robust and computationally efficient. The algorithm is implemented into MSC.MARC and a series of initial boundary value problems is solved in order to demonstrate the usability of the numerical procedures.
منابع مشابه
Mechanical behavior measurement of the sheep small intestine using experimental tests
Background: There is no consistent data on the mechanical properties of sheep intestine. OBJECTIVES: We performed a series of biaxial strain measurement experiments and extracted the constitutive model to describe the mechanical characteristics of the sheep intestinal tissue. METHODS: Eleven specimens were obtained freshly from sacrificed sheep and the planar biaxial tests were performed on th...
متن کاملSoret Dufour Driven Thermosolutal Instability of Darcy-maxwell Fluid
Linear stability of double diffusive convection of Darcy-Maxwell fluid with Soret and Dufour effects is investigated. The effects of the Soret and Dufour numbers, Lewis number, relaxation time and solutal Darcy Rayleigh number on the stationary and oscillatory convection are presented graphically. The Dufour number enhances the stability of Darcy-Maxwell fluid for stationary convection while it...
متن کاملThe influence of constitutive law choice used to characterise atherosclerotic tissue material properties on computing stress values in human carotid plaques
Calculating high stress concentration within carotid atherosclerotic plaques has been shown to be complementary to anatomical features in assessing vulnerability. Reliability of stress calculation may depend on the constitutive laws/strain energy density functions (SEDFs) used to characterize tissue material properties. Different SEDFs, including neo-Hookean, one-/two-term Ogden, Yeoh, 5-parame...
متن کاملAnalysis of Transient Rivlin-Ericksen Fluid and Irreversibility of Exothermic Reactive Hydromagnetic Variable Viscosity
This study analyzes the unsteady Rivlin-Ericksen fluid and irreversibility of exponentially temperature dependent variable viscosity of hydromagnetic two-step exothermic chemical reactive flow along the channel axis with walls convective cooling. The non-Newtonian Hele-Shaw flow of Rivlin-Erickson fluid is driven by bimolecular chemical kinetic and unvarying pressure gradient. The reactive flui...
متن کاملFluid Structural Analysis of Human Cerebral Aneurysm Using Their Own Wall Mechanical Properties
Computational Structural Dynamics (CSD) simulations, Computational Fluid Dynamics (CFD) simulation, and Fluid Structure Interaction (FSI) simulations were carried out in an anatomically realistic model of a saccular cerebral aneurysm with the objective of quantifying the effects of type of simulation on principal fluid and solid mechanics results. Eight CSD simulations, one CFD simulation, and ...
متن کامل